2050:并行课程 III(2084 分)
目录
题目
给你一个整数 n
,表示有 n
节课,课程编号从 1
到 n
。同时给你一个二维整数数组 relations
,其中 relations[j] = [prevCoursej, nextCoursej]
,表示课程 prevCoursej
必须在课程 nextCoursej
之前 完成(先修课的关系)。同时给你一个下标从 0 开始的整数数组 time
,其中 time[i]
表示完成第 (i+1)
门课程需要花费的 月份 数。
请你根据以下规则算出完成所有课程所需要的 最少 月份数:
- 如果一门课的所有先修课都已经完成,你可以在 任意 时间开始这门课程。
- 你可以 同时 上 任意门课程 。
请你返回完成所有课程所需要的 最少 月份数。
注意:测试数据保证一定可以完成所有课程(也就是先修课的关系构成一个有向无环图)。
示例 1:
输入:n = 3, relations = [[1,3],[2,3]], time = [3,2,5] 输出:8 解释:上图展示了输入数据所表示的先修关系图,以及完成每门课程需要花费的时间。 你可以在月份 0 同时开始课程 1 和 2 。 课程 1 花费 3 个月,课程 2 花费 2 个月。 所以,最早开始课程 3 的时间是月份 3 ,完成所有课程所需时间为 3 + 5 = 8 个月。
示例 2:
输入:n = 5, relations = [[1,5],[2,5],[3,5],[3,4],[4,5]], time = [1,2,3,4,5] 输出:12 解释:上图展示了输入数据所表示的先修关系图,以及完成每门课程需要花费的时间。 你可以在月份 0 同时开始课程 1 ,2 和 3 。 在月份 1,2 和 3 分别完成这三门课程。 课程 4 需在课程 3 之后开始,也就是 3 个月后。课程 4 在 3 + 4 = 7 月完成。 课程 5 需在课程 1,2,3 和 4 之后开始,也就是在 max(1,2,3,7) = 7 月开始。 所以完成所有课程所需的最少时间为 7 + 5 = 12 个月。
提示:
1 <= n <= 5 * 104
0 <= relations.length <= min(n * (n - 1) / 2, 5 * 104)
relations[j].length == 2
1 <= prevCoursej, nextCoursej <= n
prevCoursej != nextCoursej
- 所有的先修课程对
[prevCoursej, nextCoursej]
都是 互不相同 的。 time.length == n
1 <= time[i] <= 104
- 先修课程图是一个有向无环图。
相似问题:
分析
有向无环图,可以直接递归求课程 u 的最早结束时间。
解答
|
|
416 ms