目录

2050:并行课程 III(2084 分)

力扣第 264 场周赛第 4 题

题目

给你一个整数 n ,表示有 n 节课,课程编号从 1n 。同时给你一个二维整数数组 relations ,其中 relations[j] = [prevCoursej, nextCoursej] ,表示课程 prevCoursej 必须在课程 nextCoursej 之前 完成(先修课的关系)。同时给你一个下标从 0 开始的整数数组 time ,其中 time[i] 表示完成第 (i+1) 门课程需要花费的 月份 数。

请你根据以下规则算出完成所有课程所需要的 最少 月份数:

  • 如果一门课的所有先修课都已经完成,你可以在 任意 时间开始这门课程。
  • 你可以 同时任意门课程

请你返回完成所有课程所需要的 最少 月份数。

注意:测试数据保证一定可以完成所有课程(也就是先修课的关系构成一个有向无环图)。

示例 1:

输入:n = 3, relations = [[1,3],[2,3]], time = [3,2,5]
输出:8
解释:上图展示了输入数据所表示的先修关系图,以及完成每门课程需要花费的时间。
你可以在月份 0 同时开始课程 1 和 2 。
课程 1 花费 3 个月,课程 2 花费 2 个月。
所以,最早开始课程 3 的时间是月份 3 ,完成所有课程所需时间为 3 + 5 = 8 个月。

示例 2:

输入:n = 5, relations = [[1,5],[2,5],[3,5],[3,4],[4,5]], time = [1,2,3,4,5]
输出:12
解释:上图展示了输入数据所表示的先修关系图,以及完成每门课程需要花费的时间。
你可以在月份 0 同时开始课程 1 ,2 和 3 。
在月份 1,2 和 3 分别完成这三门课程。
课程 4 需在课程 3 之后开始,也就是 3 个月后。课程 4 在 3 + 4 = 7 月完成。
课程 5 需在课程 1,2,3 和 4 之后开始,也就是在 max(1,2,3,7) = 7 月开始。
所以完成所有课程所需的最少时间为 7 + 5 = 12 个月。

提示:

  • 1 <= n <= 5 * 104
  • 0 <= relations.length <= min(n * (n - 1) / 2, 5 * 104)
  • relations[j].length == 2
  • 1 <= prevCoursej, nextCoursej <= n
  • prevCoursej != nextCoursej
  • 所有的先修课程对 [prevCoursej, nextCoursej] 都是 互不相同 的。
  • time.length == n
  • 1 <= time[i] <= 104
  • 先修课程图是一个有向无环图。

相似问题:

分析

有向无环图,可以直接递归求课程 u 的最早结束时间。

解答

1
2
3
4
5
6
7
8
9
def minimumTime(self, n: int, relations: List[List[int]], time: List[int]) -> int:
    @lru_cache(None)
    def dfs(u):
        return max([dfs(v) for v in nxt[u]], default=0)+time[u]

    nxt = defaultdict(list)
    for v, u in relations:
        nxt[u-1].append(v-1)
    return max(dfs(u) for u in range(n))

416 ms