目录

2045:到达目的地的第二短时间(2201 分)

力扣第 263 场周赛第 4 题

题目

城市用一个 双向连通 图表示,图中有 n 个节点,从 1n 编号(包含 1n)。图中的边用一个二维整数数组 edges 表示,其中每个 edges[i] = [ui, vi] 表示一条节点 ui 和节点 vi 之间的双向连通边。每组节点对由 最多一条 边连通,顶点不存在连接到自身的边。穿过任意一条边的时间是 time 分钟。

每个节点都有一个交通信号灯,每 change 分钟改变一次,从绿色变成红色,再由红色变成绿色,循环往复。所有信号灯都 同时 改变。你可以在 任何时候 进入某个节点,但是 只能 在节点 信号灯是绿色时 才能离开。如果信号灯是 绿色 ,你 不能 在节点等待,必须离开。

第二小的值严格大于 最小值的所有值中最小的值。

  • 例如,[2, 3, 4] 中第二小的值是 3 ,而 [2, 2, 4] 中第二小的值是 4

给你 nedgestimechange ,返回从节点 1 到节点 n 需要的 第二短时间

注意:

  • 你可以 任意次 穿过任意顶点,包括 1n
  • 你可以假设在 启程时 ,所有信号灯刚刚变成 绿色

示例 1:

       

输入:n = 5, edges = [[1,2],[1,3],[1,4],[3,4],[4,5]], time = 3, change = 5
输出:13
解释:
上面的左图展现了给出的城市交通图。
右图中的蓝色路径是最短时间路径。
花费的时间是:
- 从节点 1 开始,总花费时间=0
- 1 -> 4:3 分钟,总花费时间=3
- 4 -> 5:3 分钟,总花费时间=6
因此需要的最小时间是 6 分钟。

右图中的红色路径是第二短时间路径。
- 从节点 1 开始,总花费时间=0
- 1 -> 3:3 分钟,总花费时间=3
- 3 -> 4:3 分钟,总花费时间=6
- 在节点 4 等待 4 分钟,总花费时间=10
- 4 -> 5:3 分钟,总花费时间=13
因此第二短时间是 13 分钟。

示例 2:

输入:n = 2, edges = [[1,2]], time = 3, change = 2
输出:11
解释:
最短时间路径是 1 -> 2 ,总花费时间 = 3 分钟
第二短时间路径是 1 -> 2 -> 1 -> 2 ,总花费时间 = 11 分钟

提示:

  • 2 <= n <= 104
  • n - 1 <= edges.length <= min(2 * 104, n * (n - 1) / 2)
  • edges[i].length == 2
  • 1 <= ui, vi <= n
  • ui != vi
  • 不含重复边
  • 每个节点都可以从其他节点直接或者间接到达
  • 1 <= time, change <= 103

相似问题:

分析

容易写出求最短路径的 dijkastra 算法,本题要求次短路径,那么同时记录到每个顶点的最短路径和次短路径, 然后修改一下入堆的判定条件即可。

(因为边的权重相等,也可以直接 bfs,将堆改为队列即可,时间更少点。)

解答

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
def secondMinimum(self, n: int, edges: List[List[int]], time: int, change: int) -> int:
    nxt = defaultdict(list)
    for u, v in edges:
        nxt[u-1].append(v-1)
        nxt[v-1].append(u-1)
    d, pq = defaultdict(list), [(0, 0)]
    while pq:
        w, u = heappop(pq)
        if len(d[u]) == 2 or (len(d[u])==1 and d[u][0]==w):
            continue
        if u == n-1 and len(d[u])==1:
            return w
        d[u].append(w)
        for v in nxt[u]:
            if len(d[v])<2:
                r = w%(change*2)
                wait = 0 if r<change else change*2-r
                heappush(pq, (w+wait+time, v))
    return -1

1632 ms