目录

1993:树上的操作(1861 分)

力扣第 60 场双周赛第 3 题

题目

给你一棵 n 个节点的树,编号从 0n - 1 ,以父节点数组 parent 的形式给出,其中 parent[i] 是第 i 个节点的父节点。树的根节点为 0 号节点,所以 parent[0] = -1 ,因为它没有父节点。你想要设计一个数据结构实现树里面对节点的加锁,解锁和升级操作。

数据结构需要支持如下函数:

  • Lock:指定用户给指定节点 上锁 ,上锁后其他用户将无法给同一节点上锁。只有当节点处于未上锁的状态下,才能进行上锁操作。
  • Unlock:指定用户给指定节点 解锁 ,只有当指定节点当前正被指定用户锁住时,才能执行该解锁操作。
  • Upgrade:指定用户给指定节点 上锁 ,并且将该节点的所有子孙节点 解锁 。只有如下 3 个条件 全部 满足时才能执行升级操作:
    • 指定节点当前状态为未上锁。
    • 指定节点至少有一个上锁状态的子孙节点(可以是 任意 用户上锁的)。
    • 指定节点没有任何上锁的祖先节点。

请你实现 LockingTree 类:

  • LockingTree(int[] parent) 用父节点数组初始化数据结构。
  • lock(int num, int user) 如果 id 为 user 的用户可以给节点 num 上锁,那么返回 true ,否则返回 false 。如果可以执行此操作,节点 num 会被 id 为 user 的用户 上锁
  • unlock(int num, int user) 如果 id 为 user 的用户可以给节点 num 解锁,那么返回 true ,否则返回 false 。如果可以执行此操作,节点 num 变为 未上锁 状态。
  • upgrade(int num, int user) 如果 id 为 user 的用户可以给节点 num 升级,那么返回 true ,否则返回 false 。如果可以执行此操作,节点 num 会被 升级

示例 1:

输入:
["LockingTree", "lock", "unlock", "unlock", "lock", "upgrade", "lock"]
[[[-1, 0, 0, 1, 1, 2, 2]], [2, 2], [2, 3], [2, 2], [4, 5], [0, 1], [0, 1]]
输出:
[null, true, false, true, true, true, false]

解释:
LockingTree lockingTree = new LockingTree([-1, 0, 0, 1, 1, 2, 2]);
lockingTree.lock(2, 2);    // 返回 true ,因为节点 2 未上锁。
// 节点 2 被用户 2 上锁。
lockingTree.unlock(2, 3);  // 返回 false ,因为用户 3 无法解锁被用户 2 上锁的节点。
lockingTree.unlock(2, 2);  // 返回 true ,因为节点 2 之前被用户 2 上锁。
// 节点 2 现在变为未上锁状态。
lockingTree.lock(4, 5);    // 返回 true ,因为节点 4 未上锁。
// 节点 4 被用户 5 上锁。
lockingTree.upgrade(0, 1); // 返回 true ,因为节点 0 未上锁且至少有一个被上锁的子孙节点(节点 4)。
// 节点 0 被用户 1 上锁,节点 4 变为未上锁。
lockingTree.lock(0, 1);    // 返回 false ,因为节点 0 已经被上锁了。

提示:

  • n == parent.length
  • 2 <= n <= 2000
  • 对于 i != 0 ,满足 0 <= parent[i] <= n - 1
  • parent[0] == -1
  • 0 <= num <= n - 1
  • 1 <= user <= 104
  • parent 表示一棵合法的树。
  • lockunlockupgrade 的调用 总共 不超过 2000 次。

相似问题:

分析

用 state 数组保存每个节点的 <是否上锁,上锁的用户 id>,然后模拟即可。

upgrade 时向上 dfs 确定没有上锁的祖先节点,然后向下 dfs 找所有上锁的子孙节点, 如果非空即代表符合条件,将它们解锁。

解答

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
class LockingTree:

    def __init__(self, parent: List[int]):
        self.parent = parent
        self.nxt = defaultdict(list)
        for v, u in enumerate(parent):
            self.nxt[u].append(v)
        self.state = [(0, 0)] * len(parent)

    def lock(self, num: int, user: int) -> bool:
        if self.state[num][0]:
            return False
        self.state[num] = (1, user)
        return True

    def unlock(self, num: int, user: int) -> bool:
        if self.state[num] != (1, user):
            return False
        self.state[num] = (0, 0)
        return True

    def upgrade(self, num: int, user: int) -> bool:
        def dfs_up(u):
            return self.state[u][0] == 0 and (u == 0 or dfs_up(self.parent[u]))

        def dfs_down(u):
            res = []
            for v in self.nxt[u]:
                res.extend(dfs_down(v))
            if self.state[u][0] == 1:
                res.append(u)
            return res

        if self.state[num][0] == 1 or not dfs_up(num):
            return False
        locked_childs = dfs_down(num)
        if not locked_childs:
            return False
        self.state[num] = (1, user)
        for child in locked_childs:
            self.state[child] = (0, 0)
        return True

1676 ms