1786:从第一个节点出发到最后一个节点的受限路径数(2078 分)
目录
题目
现有一个加权无向连通图。给你一个正整数 n
,表示图中有 n
个节点,并按从 1
到 n
给节点编号;另给你一个数组 edges
,其中每个 edges[i] = [ui, vi, weighti]
表示存在一条位于节点 ui
和 vi
之间的边,这条边的权重为 weighti
。
从节点 start
出发到节点 end
的路径是一个形如 [z0, z1, z2, ..., zk]
的节点序列,满足 z0 = start
、zk = end
且在所有符合 0 <= i <= k-1
的节点 zi
和 zi+1
之间存在一条边。
路径的距离定义为这条路径上所有边的权重总和。用 distanceToLastNode(x)
表示节点 n
和 x
之间路径的最短距离。受限路径 为满足 distanceToLastNode(zi) > distanceToLastNode(zi+1)
的一条路径,其中 0 <= i <= k-1
。
返回从节点 1
出发到节点 n
的 受限路径数 。由于数字可能很大,请返回对 109 + 7
取余 的结果。
示例 1:
输入:n = 5, edges = [[1,2,3],[1,3,3],[2,3,1],[1,4,2],[5,2,2],[3,5,1],[5,4,10]] 输出:3 解释:每个圆包含黑色的节点编号和蓝色的 distanceToLastNode 值。三条受限路径分别是: 1) 1 --> 2 --> 5 2) 1 --> 2 --> 3 --> 5 3) 1 --> 3 --> 5
示例 2:
输入:n = 7, edges = [[1,3,1],[4,1,2],[7,3,4],[2,5,3],[5,6,1],[6,7,2],[7,5,3],[2,6,4]] 输出:1 解释:每个圆包含黑色的节点编号和蓝色的 distanceToLastNode 值。唯一一条受限路径是:1 --> 3 --> 7 。
提示:
1 <= n <= 2 * 104
n - 1 <= edges.length <= 4 * 104
edges[i].length == 3
1 <= ui, vi <= n
ui != vi
1 <= weighti <= 105
- 任意两个节点之间至多存在一条边
- 任意两个节点之间至少存在一条路径
相似问题:
分析
显然可以用 dijkstra 先得到所有节点到 n 的最短距离 dis。
然后假如节点 u 和 v 相邻且 dis[u]>dis[v],连一条有向边 <u, v>,问题转为求新的有向无环图中 1 到 n 的路径。 显然可以动态规划递推。
注意到 dijkstra 出堆节点的顺序和动态规划中递推的顺序其实是一致的,因此可以同时进行。
解答
|
|
560 ms