1438:绝对差不超过限制的最长连续子数组(1672 分)
目录
题目
给你一个整数数组 nums
,和一个表示限制的整数 limit
,请你返回最长连续子数组的长度,该子数组中的任意两个元素之间的绝对差必须小于或者等于 limit
。
如果不存在满足条件的子数组,则返回 0
。
示例 1:
输入:nums = [8,2,4,7], limit = 4 输出:2 解释:所有子数组如下: [8] 最大绝对差 |8-8| = 0 <= 4. [8,2] 最大绝对差 |8-2| = 6 > 4. [8,2,4] 最大绝对差 |8-2| = 6 > 4. [8,2,4,7] 最大绝对差 |8-2| = 6 > 4. [2] 最大绝对差 |2-2| = 0 <= 4. [2,4] 最大绝对差 |2-4| = 2 <= 4. [2,4,7] 最大绝对差 |2-7| = 5 > 4. [4] 最大绝对差 |4-4| = 0 <= 4. [4,7] 最大绝对差 |4-7| = 3 <= 4. [7] 最大绝对差 |7-7| = 0 <= 4. 因此,满足题意的最长子数组的长度为 2 。
示例 2:
输入:nums = [10,1,2,4,7,2], limit = 5 输出:4 解释:满足题意的最长子数组是 [2,4,7,2],其最大绝对差 |2-7| = 5 <= 5 。
示例 3:
输入:nums = [4,2,2,2,4,4,2,2], limit = 0 输出:3
提示:
1 <= nums.length <= 10^5
1 <= nums[i] <= 10^9
0 <= limit <= 10^9
相似问题:
分析
#1
显然可以遍历结尾下标 j,找最小的 i 使得 max(nums[i:j+1])-min(nums[i:j+1])<=limit。
注意到随着 j 递增,i 必然不递减,因此是一个滑动窗口问题。
要维护 nums[i:j+1] 的最大值和最小值,考虑用有序集合。
|
|
1164 ms
#2
也可以用两个单调队列分别维护窗口的最大/小值。
解答
|
|
328 ms