0808:分汤(2396 分)
目录
题目
有 A 和 B 两种类型 的汤。一开始每种类型的汤有 n
毫升。有四种分配操作:
- 提供
100ml
的 汤A 和0ml
的 汤B 。 - 提供
75ml
的 汤A 和25ml
的 汤B 。 - 提供
50ml
的 汤A 和50ml
的 汤B 。 - 提供
25ml
的 汤A 和75ml
的 汤B 。
当我们把汤分配给某人之后,汤就没有了。每个回合,我们将从四种概率同为 0.25
的操作中进行分配选择。如果汤的剩余量不足以完成某次操作,我们将尽可能分配。当两种类型的汤都分配完时,停止操作。
注意 不存在先分配 100
ml 汤B 的操作。
需要返回的值: 汤A 先分配完的概率 + 汤A和汤B 同时分配完的概率 / 2。返回值在正确答案 10-5
的范围内将被认为是正确的。
示例 1:
输入: n = 50 输出: 0.62500 解释:如果我们选择前两个操作,A 首先将变为空。 对于第三个操作,A 和 B 会同时变为空。 对于第四个操作,B 首先将变为空。 所以 A 变为空的总概率加上 A 和 B 同时变为空的概率的一半是 0.25 *(1 + 1 + 0.5 + 0)= 0.625。
示例 2:
输入: n = 100 输出: 0.71875
提示:
0 <= n <= 109
分析
容易想到用递归,令 dfs(a, b) 代表初始汤 A、B 分别 a、b 毫升时对应的概率,即可递归。
问题在于 n 的范围较大,会超时。观察发现,当 n 够大时,结果会趋近于 1。
于是找到 n=5000 时,结果与 1 的差别不超过 10^-5,所以不需要计算 n>=5000 的情况。
解答
|
|
52 ms