0223:矩形面积(★)
目录
题目
给你 二维 平面上两个 由直线构成且边与坐标轴平行/垂直 的矩形,请你计算并返回两个矩形覆盖的总面积。
每个矩形由其 左下 顶点和 右上 顶点坐标表示:
- 第一个矩形由其左下顶点
(ax1, ay1)
和右上顶点(ax2, ay2)
定义。 - 第二个矩形由其左下顶点
(bx1, by1)
和右上顶点(bx2, by2)
定义。
示例 1:
输入:ax1 = -3, ay1 = 0, ax2 = 3, ay2 = 4, bx1 = 0, by1 = -1, bx2 = 9, by2 = 2 输出:45
示例 2:
输入:ax1 = -2, ay1 = -2, ax2 = 2, ay2 = 2, bx1 = -2, by1 = -2, bx2 = 2, by2 = 2 输出:16
提示:
-104 <= ax1, ay1, ax2, ay2, bx1, by1, bx2, by2 <= 104
相似问题:
分析
- 用两个矩形面积的和去掉重叠面积即可
- 若有重叠部分,宽必然等于 [ax1, ax2] 和 [bx1, bx2] 的重叠长度,即 $min(ax2, bx2)-max(ax1, bx1)$
- 高也同理
解答
|
|
45 ms